Weigh risk, reward in virtual, augmented reality

Altered reality technology stands to revolutionize machine building, and the technology needed to make it practical could finally be within reach.

Oem 831667 Screen Shot 2017 08 10 At 11 03 33 Am

As altered reality technology matures, manufacturers around the globe are starting to realize that its constituent virtual and augmented reality could drastically change the way OEMs build, market, and test machinery. Some OEMs are racing to implement the technology in some capacity to capitalize on a first mover’s advantage. But many are skeptical and wonder if betting on these early technologies is worth the financial risk, time commitment, and potentially, IT connectivity and security concerns.

Many OEMs that PP-OEM spoke with said practical use of altered reality seems “five years down the road,” and not something they are interested in implementing right now. Senior Project Managers Jeff Stewart and Dean Weber at Amec Foster Wheeler, a multinational consultancy, engineering, and project management company, have heard a similar tune among their packaging and processing OEM partners.

“They will be six years behind if they wait five years,” Stewart says. “If you are not on the cutting edge right now, you are going to get left behind. But for OEMs, virtual reality technology is easier to implement than it seems. I think people are more afraid to dip their toe into it more than anything else.”

In fact, a giant hurdle that OEMs don’t have to face with this technology is acquiring the software needed to create the virtual reality environment.

“One of the most important realizations is that virtual and augmented reality speak the same language as the 3D AutoCAD programs that OEMs have been using for a while,” says Glynn LoPresti, founder of the consultancy Emerging Technology Advisors. “In many cases, the machine design mock ups are the exact same files that can be dropped into virtual and augmented reality platforms. There is nothing new to learn. Those same files in a virtual or augmented reality world allow you to see your machine in complete 3D.”

So compared with industries that don’t design in AutoCAD, this technology has a low barrier to entry for OEMs.  But virtual and augmented reality are like any other potentially disruptive technology, in that there may be some initial hurdles and investments, such as allocating R&D resources and funds, and in the case of remote access uses, breaking through end user network connectivity and security.

“This technology is coming no matter what, but there are ways to prepare” LoPresti says. “There is a correct anxiety about being the first person to do it. You don’t want to base your entire future business on pioneering the use of a new, unstable technology, but you also can’t be the people who are years behind your competition. The rate of change that these technologies are penetrating and changing the industries is happening quicker than it ever has in the past.”

But unlike the accessibility of the software, some industry insiders note that virtual and augmented reality hardware like Google Glass may not be robust enough for industrial applications, or headsets like the Microsoft Hololens can be heavy and apparently too bulky to allow operators or technicians to “get inside” the machine. High cost and limited battery life are also commonly heard criticisms. But technology and battery life will improve, and prices will come down as general hardware becomes more specialized for OEM applications.

Understanding the difference between augmented and virtual
While both versions of altered reality—augmented and virtual—use some of the same technology and provide an enhanced virtual experience, the capabilities, equipment, and software needs vastly differ.

Virtual reality is an artificial, computer-generated simulation of a real-life environment. Virtual headsets simulate an operator’s vision and hearing to provide a firsthand experience of the simulated reality, to the exclusion of the actual surroundings. The technology needed to simulate virtual reality is a headset, such as the Oculus Rift or the HTC Vive, which retails anywhere from $120 to $800. The environment itself can be created through a coding language known as virtual reality modeling language (VRML), which can also be found in the AutoCAD files that OEMs already use to create 3D models of their equipment.

Since operators cannot see the real world around them when they are using a virtual reality headset, the opportunities virtual reality brings to manufacturing and service are limited. But it still offers a unique approach to trade show marketing, machine demonstrations, and employee training.

Augmented reality, on the other hand, layers computer generated enhancements, like digital images and graphics, over an existing reality. This allows users and operators to interact with the world around them while in an augmented reality state. Augmented reality uses headsets, too, but unlike virtual reality headsets, they allow operators to see through the headset into the real-world. This technology may prove to be ideal for remote maintenance, employee training, and machine assembly. Augmented reality headsets like Google Glass or Microsoft Hololens retail anywhere from $199 to $4,500, and the technology, still in its infancy, is always undergoing fresh iterations and advancements.

Augmented technology implementation is a riskier prospect at the moment because it is more expensive and the software and technology are not thoroughly developed yet. Plus, wireless connectivity in a plant setting can be a challenge. Still, it has the potential to transform the way OEMs handle maintenance, ordering spare parts, aftermarket e-commerce, employee and end user training, machine assembly, and machine testing.  But when it comes to using this technology for remote maintenance, OEMs may face strong headwinds from security-minded end user IT departments.

OEMs wade into virtual reality
During interpack 2017, Intralox, a New Orleans-based conveyor belt manufacturer, used videos and AutoCAD drawings to virtually demonstrate how the OEM’s conveyors can optimize plant floor layouts. They imported these videos and drawings into Emulate3D’s DEMO3D software and used the HTC Vive virtual reality headset to display the plant floor mockups.

List: Digitalization Companies From PACK EXPO
Looking for CPG-focused digital transformation solutions? Download our editor-curated list from PACK EXPO featuring top companies offering warehouse management, ERP, digital twin, and MES software with supply chain visibility and analytics capabilities—all tailored specifically for CPG operations.
Download Now
List: Digitalization Companies From PACK EXPO