Visit our Content Hub!
Access free downloadable content curated by our editors.

Is Your Machine Safe?

There are many sides to safety, including standards, regulations, functional requirements and even unforeseen circumstances.

Urschel Laboratories
Urschel Laboratories

By Stephanie Neil, Editor-in-Chief

The last time Ron Bocian went on a site visit at a manufacturer’s facility to investigate a safety incident involving an Urschel slicer, he found that someone had miswired the machine so that it didn’t provide the level of protection required. And it certainly wasn’t the first time something like that had happened. 

Bocian, the electrical engineer and risk manager at Urschel Laboratories, Inc., an Indiana-based OEM of food cutting technology, knows you can design a machine that is as safe as it can possibly be, but there will always be the fear of the unknown. It’s what Bocian calls reasonable foreseeable misuse. “What’s an operator going to do to get injured that you couldn’t foresee them doing?”

And that’s just one of the many things OEMs have to think about when they are designing a safe, yet flexible, machine. There are considerations around cost, competition, global markets and the ability to provide end users with more efficient systems that can evolve with new consumer demands. And all of this has to be done while meeting requirements from both the Occupational Safety and Health Administration (OSHA) and the U.S. Food and Drug Administration (FDA).

“Unfortunately, food safety is contradictory to machine safety,” Bocian says. “Machine safety is about adding interlocks that are creating crevices for bacteria to harbor. They are two competing safety issues. It’s a balancing act.”

On top of that, there are many safety standards and equipment requirements that can leave even savvy machine builders scratching their heads. For example, a robot integrated as part of a packaging machine used in a manufacturing facility will have to follow at least nine standards from the International Organization for Standardization (ISO), the American National Standards Institute (ANSI) and the National Fire Protection Association (NFPA).

Keeping up with these ever-evolving standards—which are refreshed every five years to keep up with technology changes and data requirements—can be a challenge. In addition, despite the fact that there are harmonizing efforts underway to align ANSI, ISO and the International Electrotechnical Commission (IEC), if an OEM is selling equipment in other countries, there may be additional legal requirements.

“You have to consider the difference between standards and regulations,” explains Fred Hayes, director of technical services at PMMI. “In the U.S., there is no regulation that tells an OEM how to build a machine. In Europe, there’s a different attitude. They have a machinery directive that tells a builder what he must comply with to meet the law.”

But, even when everything is done in compliance, there’s still the issue of operator error, which is uncontrollable. In fact, an ANSI standard states that “there is no such thing as being absolutely safe, that is, a complete absence of risk. Therefore, there is no machinery, including packaging and processing machinery, that is absolutely safe in the sense of being completely devoid of all conceivable risks.”

That means OEMs must build machines at their own risk. Because when that inevitable “something” happens, even if it’s not technically the OEM’s fault, the machine builder may still be held liable.

“Throughout the world everyone is struggling with the same issues,” says Bruce Main, president of design safety engineering, inc., a software and engineering services company that is focused on helping OEMs improve the safety of their equipment. “There is no magic solution of how to build a machine for the U.S. versus Europe or elsewhere. Fundamentally, you have to achieve acceptable risk. So, if an OEM starts with that, the standards become tools to help them as opposed to specific requirements that they have to chase down.”

Mitigating risk 
In an effort to demystify what can be a confusing endeavor, industry experts recommend starting with a risk assessment comprised of multiple steps: Identifying hazards, assessing the risk, reducing risk to an acceptable level, documenting the results and following up to ensure the machine does what it’s supposed to do. This risk mitigation is not just an exercise to understand what standards to apply to the machine, but a way to pay attention to the application. For example, if a machine is to be used in the food industry, there are hygiene requirements to consider, too.

With that in mind, one of the first things an OEM should do is apply the ANSI/PMMI B155.1-2016 Safety Requirements for Packaging and Processing Machinery standard, a formal method for identifying hazards and hierarchy of control. The standard, which has evolved since it was first approved in 1972, specifies terminology, principles and methodology for achieving safety by design. 

“The risk assessment helps to identify hazards and pick the appropriate risk reduction methods, which could be a guard, a light curtain or personal

protective equipment” says PMMI’s Hayes. “The other standards, like ANSI B11 or ISO 12100, tells you that if you do need a guard, what the specific requirements are.” 

ANSI B11.19, for example, outlines the performance criteria for safeguarding as it relates to the design, construction, installation, operations and maintenance of the guard when applied to machines. It does not provide requirements for the selection of the safeguarding for a particular application. 

To that end, functional requirements that define what happens to a machine in response to a person’s action are an important part of the risk assessment process.